Ridge regression and asymptotic minimax estimation over spheres of growing dimension

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Density Estimation for Growing Dimension

This paper presents minimax rates for density estimation when the data dimension d is allowed to grow with the number of observations n rather than remaining fixed as in previous analyses. We prove a non-asymptotic lower bound which gives the worst-case rate over standard classes of smooth densities, and we show that kernel density estimators achieve this rate. We also give oracle choices for t...

متن کامل

Adaptive minimax regression estimation over sparse lq-hulls

Given a dictionary of Mn predictors, in a random design regression setting with n observations, we construct estimators that target the best performance among all the linear combinations of the predictors under a sparse `q-norm (0 ≤ q ≤ 1) constraint on the linear coefficients. Besides identifying the optimal rates of convergence, our universal aggregation strategies by model mixing achieve the...

متن کامل

Minimax adaptive dimension reduction for regression

In this paper, we address the problem of regression estimation in the context of a p-dimensional predictor when p is large. We propose a general model in which the regression function is a composite function. Our model consists in a nonlinear extension of the usual sufficient dimension reduction setting. The strategy followed for estimating the regression function is based on the estimation of ...

متن کامل

A new class of generalized Bayes minimax ridge regression estimators

Let y = Aβ + ε, where y is an N × 1 vector of observations, β is a p× 1 vector of unknown regression coefficients, A is an N × p design matrix and ε is a spherically symmetric error term with unknown scale parameter σ. We consider estimation of β under general quadratic loss functions, and, in particular, extend the work of Strawderman [J. Amer. Statist. Assoc. 73 (1978) 623–627] and Casella [A...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2016

ISSN: 1350-7265

DOI: 10.3150/14-bej609